45 research outputs found

    AnEnPi: Identification and annotation of analogous enzymes

    Get PDF
    Enzymes are responsible for the catalysis of the biochemical reactions in metabolic pathways. Analogous enzymes are able to catalyze the same reactions, but they present no significant sequence similarity at the primary level, and possibly different tertiary structures as well. They are thought to have arisen as the result of independent evolutionary events. A detailed study of analogous enzymes may reveal new catalytic mechanisms, add information about the origin and evolution of biochemical pathways and disclose potential targets for drug development. Results: In this work, we have constructed and implemented a new approach, AnEnPi (the Analogous Enzyme Pipeline), using a combination of bioinformatics tools like BLAST, HMMer, and in-house scripts, to assist in the identification, annotation, comparison and study of analogous and homologous enzymes. The algorithm for the detection of analogy is based i) on the construction of groups of homologous enzymes and ii) on the identification of cases where a given enzymatic activity is performed by two or more proteins without significant similarity between their primary structures. We applied this approach to a dataset obtained from KEGG Comprising all annotated enzymes, which resulted in the identification of 986 EC classes where putative analogy was detected (40.5% of all EC classes). AnEnPi is of considerable value in the construction of initial datasets that can be further curated, particularly in gene and genome annotation, in studies involving molecular evolution and metabolism and in the identification of new potential drug targets. Conclusion: AnEnPi is an efficient tool for detection and annotation of analogous enzymes and other enzymes in whole genomes

    Currents issues in cardiorespiratory care of patients with post-polio syndrome

    Get PDF
    Post-polio syndrome (PPS) is a condition that affects polio survivors years after recovery from an initial acute attack of the poliomyelitis virus. Most often, polio survivors experience a gradual new weakening in muscles that were previously affected by the polio infection. The actual incidence of cardiovascular diseases (CVDs) in individuals suffering from PPS is not known. However, there is a reason to suspect that individuals with PPS might be at increased risk. Method: A search for papers was made in the databases Bireme, Scielo and Pubmed with the following keywords: post polio syndrome, cardiorespiratory and rehabilitation in English, French and Spanish languages. Although we targeted only seek current studies on the topic in question, only the relevant (double-blind, randomized-controlled and consensus articles) were considered. Results and Discussion: Certain features of PPS such as generalized fatigue, generalized and specific muscle weakness, joint and/or muscle pain may result in physical inactivity deconditioning obesity and dyslipidemia. Respiratory difficulties are common and may result in hypoxemia. Conclusion: Only when evaluated and treated promptly, somE patients can obtain the full benefits of the use of respiratory muscles aids as far as quality of life is concerned.Ctr Univ Augusto Motta, Programa Posgrad Ciencias Reabilitacao, Rio De Janeiro, RJ, BrazilUniv Severino Sombra, Fac Med, Vassouras, RJ, BrazilUniv Fed Rio de Janeiro, Inst Psiquiatria, Lab Mapeamento Cerebral & EEG, BR-22290140 Rio De Janeiro, RJ, BrazilUniv Fed Fluminense, Hosp Univ Antonio Pedro, Niteroi, RJ, BrazilInst Fed Educ Ciencia & Tecnol Rio de Janeiro, Curso Fisioterapia, Rio De Janeiro, RJ, BrazilUniv Fed Piaui, Parnaiba, PI, BrazilUniv Fed Sao Paulo, Dept Neurol, Sao Paulo, SP, BrazilUniv Fed Sao Paulo, Dept Neurol, Sao Paulo, SP, BrazilWeb of Scienc

    Developments on drug discovery and on new therapeutics: highly diluted tinctures act as biological response modifiers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the search for new therapies novel drugs and medications are being discovered, developed and tested in laboratories. Highly diluted substances are intended to enhance immune system responses resulting in reduced frequency of various diseases, and often present no risk of serious side-effects due to its low toxicity. Over the past years our research group has been investigating the action of highly diluted substances and tinctures on cells from the immune system.</p> <p>Methods</p> <p>We have developed and tested several highly diluted tinctures and here we describe the biological activity of M1, M2, and M8 both <it>in vitro </it>in immune cells from mice and human, and <it>in vivo </it>in mice. Cytotoxicity, cytokines released and NF-κB activation were determined after <it>in vitro </it>treatment. Cell viability, oxidative response, lipid peroxidation, bone marrow and lymph node cells immunophenotyping were accessed after mice <it>in vivo </it>treatment.</p> <p>Results</p> <p>None of the highly diluted tinctures tested were cytotoxic to macrophages or K562. Lipopolysaccharide (LPS)-stimulated macrophages treated with all highly diluted tinctures decreased tumour necrosis factor alpha (TNF-α) release and M1, and M8 decreased IFN-<it>γ </it>production. M1 has decreased NF-κB activity on TNF-α stimulated reporter cell line. <it>In vivo </it>treatment lead to a decrease in reactive oxygen species (ROS), nitric oxide (NO) production was increased by M1, and M8, and lipid peroxidation was induced by M1, and M2. All compounds enhanced the innate immunity, but M1 also augmented acquired immunity and M2 diminished B lymphocytes, responsible to acquired immunity.</p> <p>Conclusions</p> <p>Based on the results presented here, these highly diluted tinctures were shown to modulate immune responses. Even though further investigation is needed there is an indication that these highly diluted tinctures could be used as therapeutic interventions in disorders where the immune system is compromised.</p

    Estimating the global conservation status of more than 15,000 Amazonian tree species

    Get PDF
    Estimates of extinction risk for Amazonian plant and animal species are rare and not often incorporated into land-use policy and conservation planning. We overlay spatial distribution models with historical and projected deforestation to show that at least 36% and up to 57% of all Amazonian tree species are likely to qualify as globally threatened under International Union for Conservation of Nature (IUCN) Red List criteria. If confirmed, these results would increase the number of threatened plant species on Earth by 22%. We show that the trends observed in Amazonia apply to trees throughout the tropics, and we predict thatmost of the world’s >40,000 tropical tree species now qualify as globally threatened. A gap analysis suggests that existing Amazonian protected areas and indigenous territories will protect viable populations of most threatened species if these areas suffer no further degradation, highlighting the key roles that protected areas, indigenous peoples, and improved governance can play in preventing large-scale extinctions in the tropics in this century

    Hyperdominance in Amazonian Forest Carbon Cycling

    Get PDF
    While Amazonian forests are extraordinarily diverse, the abundance of trees is skewed strongly towards relatively few ‘hyperdominant’ species. In addition to their diversity, Amazonian trees are a key component of the global carbon cycle, assimilating and storing more carbon than any other ecosystem on Earth. Here we ask, using a unique data set of 530 forest plots, if the functions of storing and producing woody carbon are concentrated in a small number of tree species, whether the most abundant species also dominate carbon cycling, and whether dominant species are characterized by specific functional traits. We find that dominance of forest function is even more concentrated in a few species than is dominance of tree abundance, with only ≈1% of Amazon tree species responsible for 50% of carbon storage and productivity. Although those species that contribute most to biomass and productivity are often abundant, species maximum size is also influential, while the identity and ranking of dominant species varies by function and by region

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Rising rural body-mass index is the main driver of the global obesity epidemic in adults

    Get PDF
    Body-mass index (BMI) has increased steadily in most countries in parallel with a rise in the proportion of the population who live in cities(.)(1,2) This has led to a widely reported view that urbanization is one of the most important drivers of the global rise in obesity(3-6). Here we use 2,009 population-based studies, with measurements of height and weight in more than 112 million adults, to report national, regional and global trends in mean BMI segregated by place of residence (a rural or urban area) from 1985 to 2017. We show that, contrary to the dominant paradigm, more than 55% of the global rise in mean BMI from 1985 to 2017-and more than 80% in some low- and middle-income regions-was due to increases in BMI in rural areas. This large contribution stems from the fact that, with the exception of women in sub-Saharan Africa, BMI is increasing at the same rate or faster in rural areas than in cities in low- and middle-income regions. These trends have in turn resulted in a closing-and in some countries reversal-of the gap in BMI between urban and rural areas in low- and middle-income countries, especially for women. In high-income and industrialized countries, we noted a persistently higher rural BMI, especially for women. There is an urgent need for an integrated approach to rural nutrition that enhances financial and physical access to healthy foods, to avoid replacing the rural undernutrition disadvantage in poor countries with a more general malnutrition disadvantage that entails excessive consumption of low-quality calories.Peer reviewe
    corecore